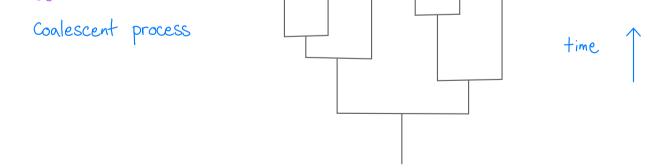
Sarah Penington University of Bath

Joint work with Matt Roberts and Zsófia Talyigás

Branching-selection systems

- Particle systems: particles branch (produce offspring) and move in space killing rule keeps total number of particles constant.
- · Toy models for a population under selection.
  - Location of a particle (= individual) represents its evolutionary fitness.
- Introduced by Brunet and Derrida in 1990s.
  Recent results and open conjectures about long-term behaviour.
  Genealogy:



Let X be a real-valued random variable (jump distribution).

At each time nello, each particle has two offspring.

Each of the 2N offspring particles makes an independent jump from its parent's location, with the same law as X.

The N rightmost particles (of the 2N offspring particles) form the population at time n+1.

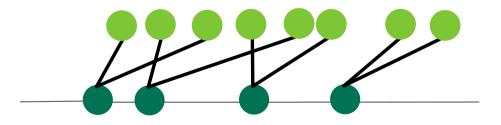


Let X be a real-valued random variable (jump distribution).

At each time nello, each particle has two offspring.

Each of the 2N offspring particles makes an independent jump from its parent's location, with the same law as X.

The N rightmost particles (of the 2N offspring particles) form the population at time n+1.

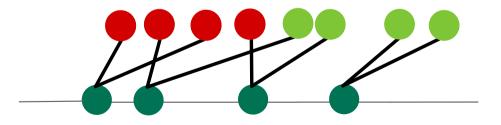


Let X be a real-valued random variable (jump distribution).

At each time nello, each particle has two offspring.

Each of the 2N offspring particles makes an independent jump from its parent's location, with the same law as X.

The N rightmost particles (of the 2N offspring particles) form the population at time n+1.

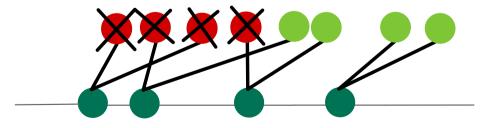


Let X be a real-valued random variable (jump distribution).

At each time nello, each particle has two offspring.

Each of the 2N offspring particles makes an independent jump from its parent's location, with the same law as X.

The N rightmost particles (of the 2N offspring particles) form the population at time n+1.

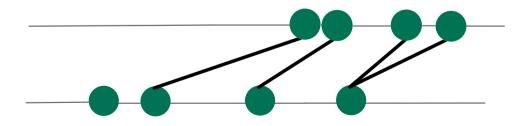


Let X be a real-valued random variable (jump distribution).

At each time nello, each particle has two offspring.

Each of the 2N offspring particles makes an independent jump from its parent's location, with the same law as X.

The N rightmost particles (of the 2N offspring particles) form the population at time n+1.



Light-tailed jump distribution $P(X > \infty) \le e^{-cx}$ , c > 0Asymptotic speedIf  $E[X] < \infty$  then  $\exists v_N \in (0, \infty)$  s.t. $\lim_{n \to \infty} \frac{X_N^{(N)}(n)}{n} = v_N = \lim_{n \to \infty} \frac{X_1^{(N)}(n)}{n}$  a.s. andin  $L^1$ .

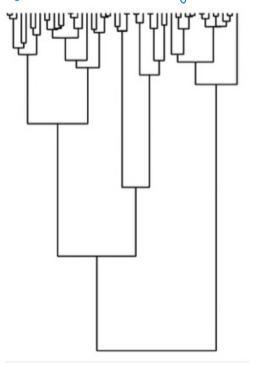
Light-tailed jump distribution Asymptotic speed If  $\mathbb{E}[X] < \infty$  then  $\exists v_N \in (0, \infty)$  s.t.  $\lim_{N \to \infty} \frac{\chi_N^{(N)}(n)}{n} = v_N = \lim_{N \to \infty} \frac{\chi_{1}^{(N)}(n)}{n}$  a.s. and  $n \to \infty$   $\frac{1}{n} = v_N = \lim_{N \to \infty} \frac{\chi_{1}^{(N)}(n)}{n}$  a.s. and  $n \to \infty$   $\frac{1}{n} = v_N = \lim_{N \to \infty} \frac{\chi_{1}^{(N)}(n)}{n}$  a.s. and  $\frac{1}{n} = \frac{1}{n}$ <u>Theorem</u> (Bérard and Gouéré 2010) If  $\mathbb{E}[e^{XX}] < \infty$  for some  $\lambda > 0$  (+ technical assumptions) then  $\lim_{N \to \infty} v_N = v_\infty$  exists and  $v_\infty - v_N \sim c (\log N)^{-2}$  as  $N \to \infty$ . Conjectured by Branet + Derrida 1997. Related result for Fisher - KPP equation with noise

(Mueller, Mytnik, Quastel 2009)

Light-tailed jump distribution Asymptotic speed  $\lim_{n \to \infty} \frac{X_{N}^{(N)}(n)}{n} = V_{N} = \lim_{n \to \infty} \frac{X_{1}^{(N)}(n)}{n} \quad \text{a.s. and} \quad \lim_{n \to \infty} L^{1}.$ If  $\mathbb{E}[X] < \infty$  then  $\exists v_N \in (0, \infty)$  s.t. Theorem (Bérard and Gouéré 2010) If  $\mathbb{E}[e^{\lambda X}] < \infty$  for some  $\lambda > 0$  (+technical assumptions)  $\lim_{N \to \infty} V_N = V_{\infty} \text{ exists and } V_{\infty} - V_N \sim C (\log N)^{-2} \text{ as } N \to \infty.$ then Conjectured by Brunet + Derrida 1997. Related result for Fisher-KPP equation with noise (Mueller, Mytnik, Quastel 2009) Genealogy Sample k particles from the N particles and trace their ancestry backwards in time  $\rightarrow$  coalescent process. Conjecture (Brunet, Derrida, Mueller, Munier) If X is light-tailed then the genealogy of a sample on a  $(\log N)^3$  timescale converges to a Bolthausen-Sznitman coalescent as  $N \rightarrow \infty$ .

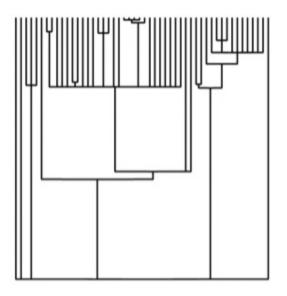
## Coalescent processes

Kingman's coalescent Neutral population: choose particles to kill uniformly at random in each generation.



Bolthausen-Sznitman coalescent

Population under selection.



Thanks to Götz Kersting and Anton Wakolbinger

Light-tailed jump distribution Asymptotic speed  $\lim_{n \to \infty} \frac{X_{N}^{(N)}(n)}{n} = V_{N} = \lim_{n \to \infty} \frac{X_{1}^{(N)}(n)}{n} \quad \text{a.s. and} \quad \lim_{n \to \infty} L^{1}.$ If  $\mathbb{E}[X] < \infty$  then  $\exists v_N \in (0, \infty)$  s.t. Theorem (Bérard and Gouéré 2010) If  $\mathbb{E}[e^{\lambda X}] < \infty$  for some  $\lambda > 0$  (+technical assumptions)  $\lim_{N \to \infty} V_N = V_{\infty} \text{ exists and } V_{\infty} - V_N \sim C (\log N)^{-2} \text{ as } N \to \infty.$ then Conjectured by Brunet + Derrida 1997. Related result for Fisher-KPP equation with noise (Mueller, Mytnik, Quastel 2009) Genealogy Sample k particles from the N particles and trace their ancestry backwards in time  $\rightarrow$  coalescent process. Conjecture (Brunet, Derrida, Mueller, Munier) If X is light-tailed then the genealogy of a sample on a  $(\log N)^3$  timescale converges to a Bolthausen-Sznitman coalescent as  $N \rightarrow \infty$ .

N-BRW with heavy-tailed jump distribution Suppose  $\mathbb{P}(X > \infty) \sim \infty^{-\alpha}$  as  $\infty \to \infty$ , for some  $\alpha > 0$ . Asymptotic speed Theorem (Bérard and Maillard 2014) If  $\mathbb{E}[X] < \infty$ ,  $\lim_{n \to \infty} \frac{X_{N}^{(N)}(n)}{n} = V_{N}$  where  $V_{N} \sim C_{\alpha} N^{\prime \prime \alpha} (\log N)^{\prime \prime \alpha - 1}$ as  $N \rightarrow \infty$ . If  $\mathbb{E}[X] = \infty$ , cloud of particles accelerates. Genealogy Conjecture (Bérard and Maillard) The genealogy on a log N timescale is approximately given by a Star-shaped coalescent when N is large.

Time and space scales

Let 
$$P(X > \infty) = \frac{1}{h(\infty)}$$
 for  $\infty \ge 0$ .

Assume h is regularly varying with index 2>0

i.e. for any 
$$y>0$$
,  $\frac{h(xy)}{h(x)} \longrightarrow y^{\alpha}$  as  $x \to \infty$ .

and  $\mathbb{P}(X \ge 0) = 1$  (no negative jumps).

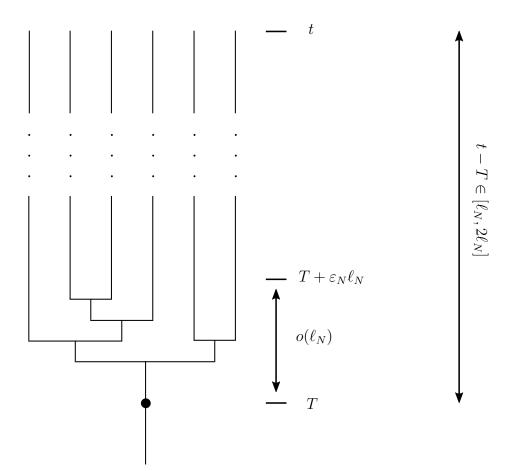
Let  $l_N = \lceil \log_2 N^7 \rceil$  time scale

Let  $a_N = h^{-1}(2N\ell_N)$ , where  $h^{-1}(\infty) := \inf \{y \ge 0 : h(y) > \infty \}$ . Space scale mps of size >  $c_{1}a_{N}$  in a time interval of length  $c_{2}l_{N}$  =  $2N \cdot c_{2}l_{N} P(X > c_{1}a_{N})$ =  $2N c_{2}l_{N} Q_{1}$  $E[\# jumps of size > C_1 a_N in$ 

$$= \frac{2NC_2\ell_N}{h(c_1a_N)} \sim \frac{2NC_2\ell_N}{c_1^{\alpha}2N\ell_N} = \frac{C_2}{c_1^{\alpha}}$$
  
as  $N \rightarrow \infty$ .

Main result

 $\omega.h.p. = \omega ith probability \rightarrow 1$  as  $N \rightarrow \infty$ . Theorem (P., Roberts, Talyigás 2021) For  $\eta > 0$ , kell and  $t > 4\ell_N$ , the following occurs  $\omega.h.p.:$ • Spatial distribution: At time t, there are N - o(N) particles in  $[X_{1}^{(N)}(t), X_{1}^{(N)}(t) + \eta a_{N}].$ • Genealogy: The genealogy on an  $l_N$  -timescale is asymptotically given by a star-shaped coalescent. i.e.  $\exists T \in [t - 2l_N, t - l_N]$  s.t.  $\omega$ .h.p., for a uniform sample of k particles at time t, every particle is descended from the rightmost particle at time T and no pair of particles in the sample has a common ancestor after time  $T + \Sigma_N \ell_N$ , for any  $(\Sigma_N)_N$  with  $\Sigma_N \rightarrow 0$  and  $\Sigma_N \ell_N \rightarrow \infty$  as  $N \rightarrow \infty$ .



 $\exists T \in [t-2l_N, t-l_N] \text{ s.t. } \omega.h.p., \text{ for a uniform sample of } k \text{ particles} \\ \text{at time } t, \text{ every particle is descended from the rightmost particle at time } T \\ \text{and no pair of particles in the sample has a common ancestor after time} \\ T + E_N l_N, \text{ for any } (E_N)_N \text{ with } E_N \rightarrow O \text{ and } E_N l_N \rightarrow \infty \text{ as } N \rightarrow \infty. \end{cases}$ 

N-BRW genealogy Jump distribution X.

Light-tailed  $\mathbb{P}(X > \infty) \leq e^{-cx}$ , c>0

Time to coalesce Coalescent (log N)<sup>3</sup> Bolthausen-Sznitman

Heavy-tailed  $P(X > x) \sim x^{-\alpha}, \alpha > 0$ 

log N Star-shaped

N-BRW genealogy Jump distribution X.

Time to coalesceCoalescentLight-tailed 
$$P(X > \infty) \le e^{-cx}$$
, c>0 $(\log N)^3$ Bolthausen-SznitmanStretched exponential  $P(X > \infty) \sim e^{-\infty \beta}$ ,  $\beta \in (0, 1)$ ????tail $P(X > \infty) \sim e^{-\alpha}$ ,  $\alpha > 0$  $\log N$ Star-shaped

Work in progess with Z. Talyigás.

N-BRW genealogy Jump distribution X.

Time to coalesceCoalescentLight-tailed
$$P(X > \infty) \le e^{-cx}$$
,  $c > 0$  $(\log N)^3$ Bolthausen-SznitmanStretched exponential $P(X > \infty) \sim e^{-\infty\beta}$ ,  $\beta \in (0, 1)$ ????Heavy-tailed $P(X > \infty) \sim \infty^{-\alpha}$ ,  $\alpha > 0$  $\log N$ Star-shaped

Work in progess with Z. Talyigás. Simulation by Z. Talyigás.

## Proof heuristics

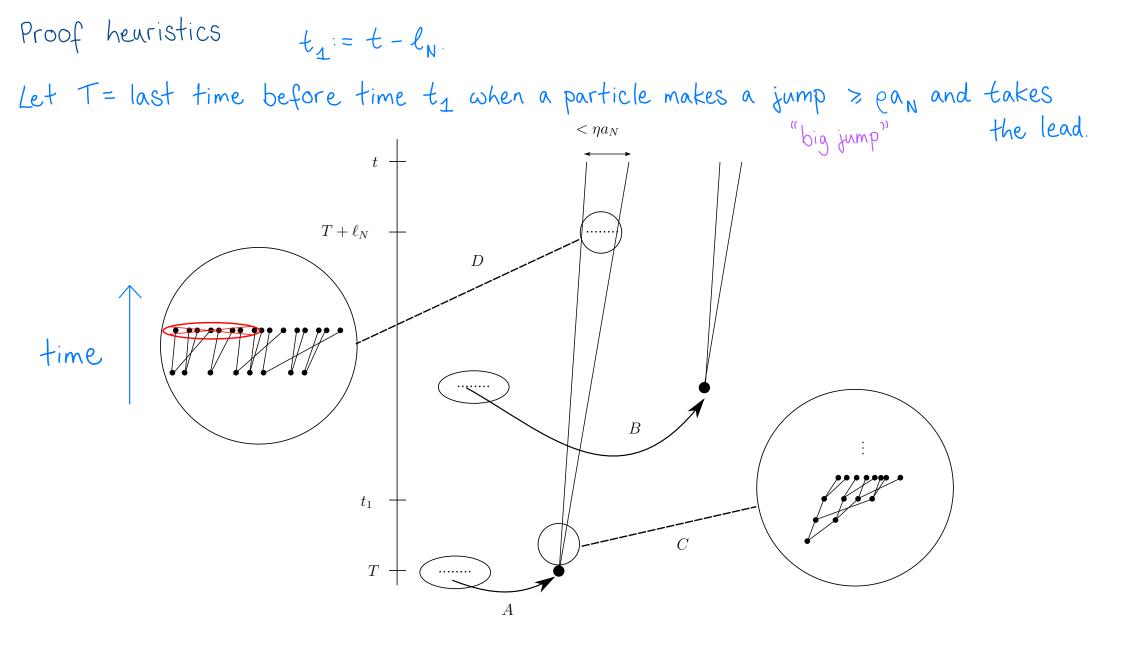
Want to show: w.h.p., for  $t > 4l_N$ , N-O(N) particles  $\leq \eta a_N$  from leftmost  $\exists T \in [t-2l_N, t-l_N]$  s.t.

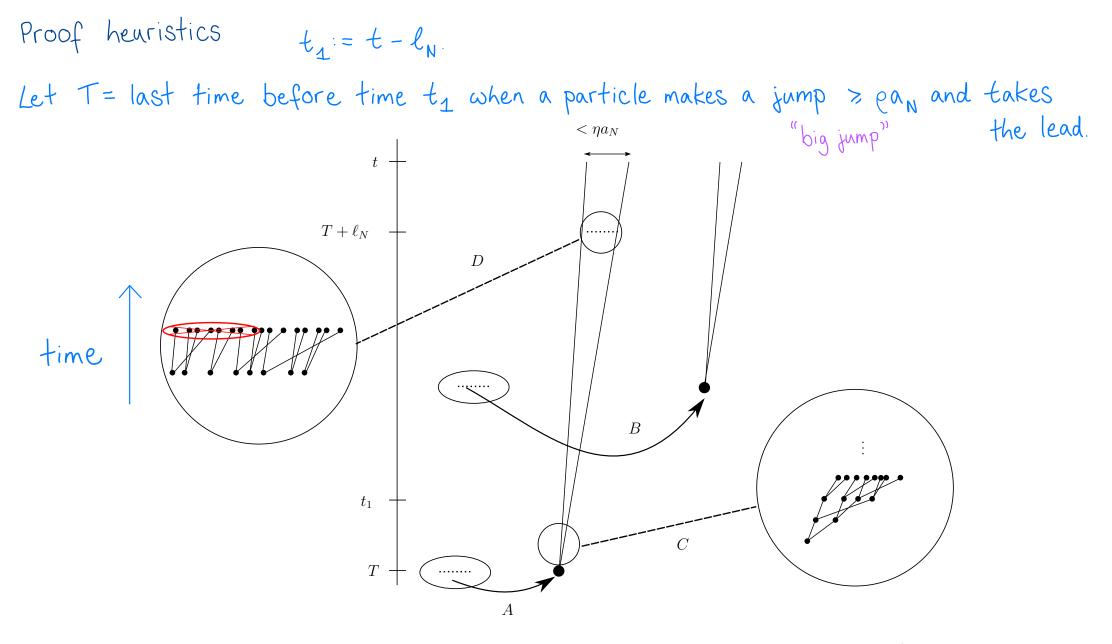
• sample size k are all descended from rightmost time-T particle • no common ancestors of sample after time  $T + \varepsilon_N \ell_N$ 

Proof heuristics Want to show: w.h.p., for t>4l, N-O(N) particles  $\leq \eta a_N$  from leftmost  $\exists T \in [t - 2\ell_N, t - \ell_N]$  s.t. · sample size k are all descended from rightmost time-T particle ·no common ancestors of sample after time T+ EN ln  $X_1, X_2, X_3, \dots$  i.i.d. with  $X_1 \stackrel{d}{=} X$ . Random walk with heavy tailed jumps

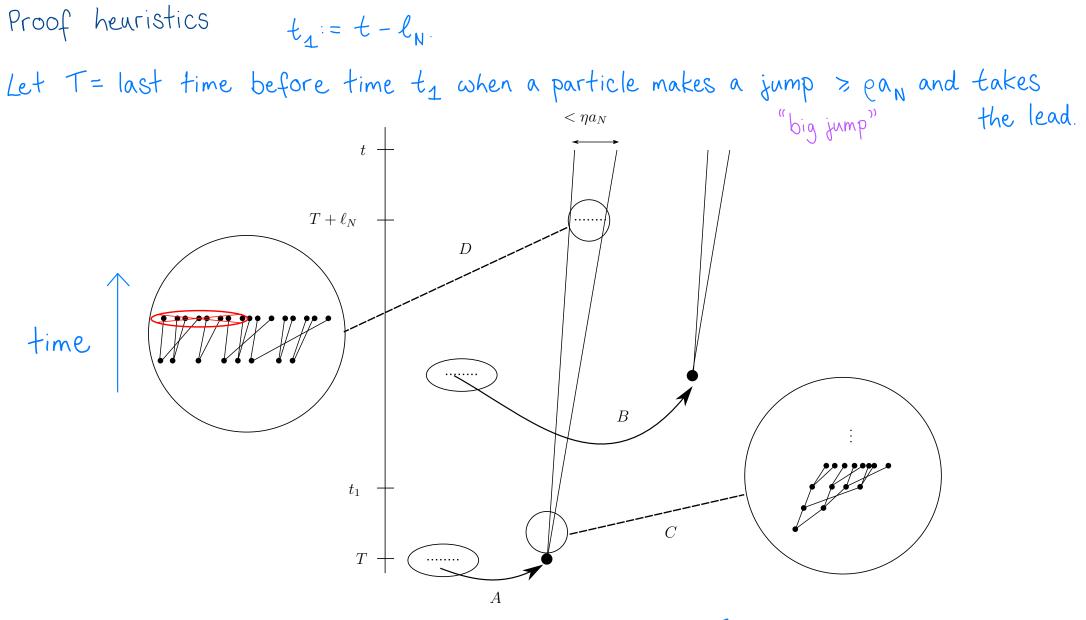
Lemma (Durrett '83, Gantert '00)

For mEIN, q > 0,  $\lambda > 0$ , for r > 0 small, for N sufficiently large, if  $x_N > N^{\lambda}$ then  $P\left(\sum_{j=1}^{ml_N} X_j \ge x_N, X_i \le rx_N \quad \forall i \le ml_N\right) \le N^{-9}.$ 





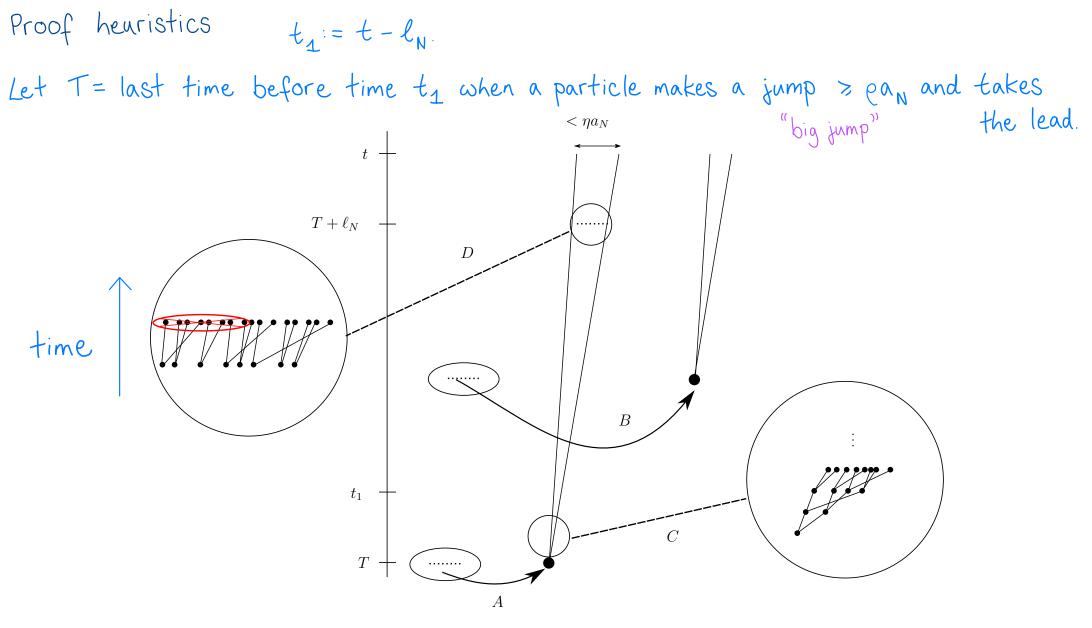
A: A particle makes a big jump at time T and takes the lead (by  $\Theta(a_N)$ ). Its descendants stay in the lead until time  $t_1$  (other particles can't take the lead with a big jump, and can't move far without a big jump).



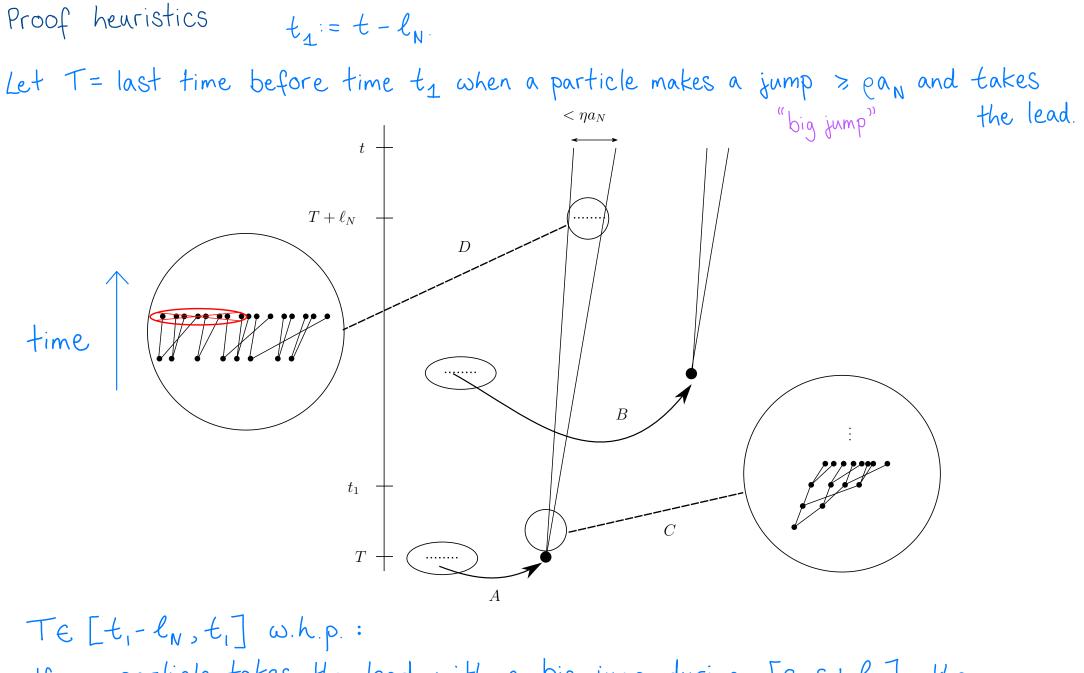
B: There are O(1) big jumps in time interval  $[t_1, t]$ , each with O(N) descendants at time t.



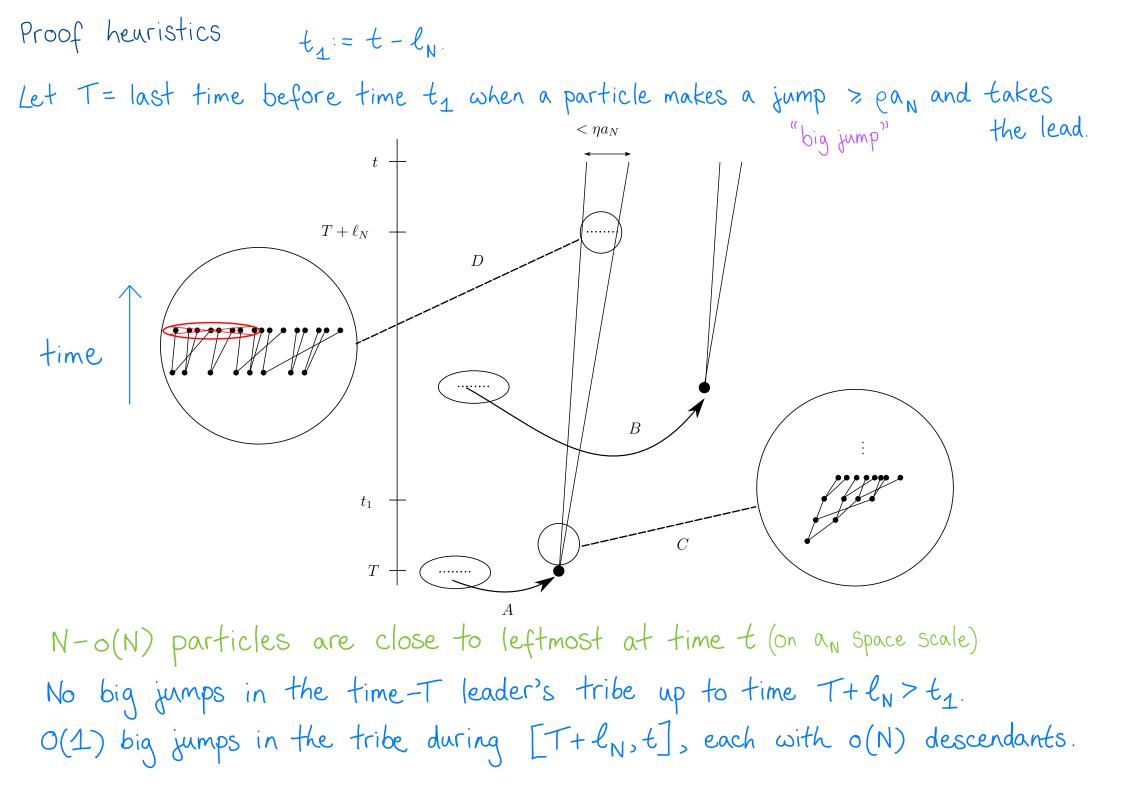
C: The tribe descended from the time-T leader doubles in size at each timestep until almost time  $T + l_N$ .

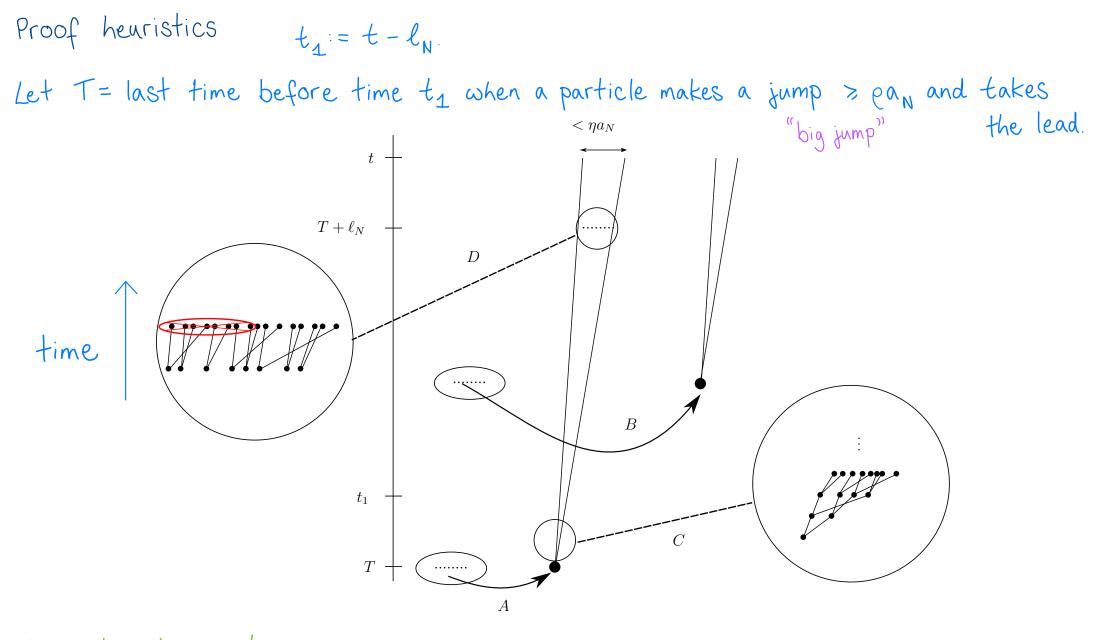


D: On the time interval  $[T+l_N,t]$ , the time-T leader's tribe has size N-O(N).



If no particle takes the lead with a big jump during  $[S, S+l_N]$ , then diameter at time  $S+l_N$  is small (on  $a_N$  space scale).





Star-shaped genealogy No time- $(T + \varepsilon_N \ell_N)$  particles have  $\Theta(N)$  time-t descendants. None of the particles in the time-T leader's tribe have moved far by time  $T + \varepsilon_N \ell_N$ , so each has  $\Theta(N 2^{-\varepsilon_N \ell_N}) = o(N)$  descendants at time t.