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Branching- selection systems
• Particle systems : particles branch ( produce offspring) and move in space

killing rule keeps total number of particles constant .

• Toy models for a population under selection .

Location of a particle f- individual) represents its evolutionary fitness .

• Introduced by Brunet and Derrida in 1990s
.

Recent results and open conjectures about long-term behaviour
.

Genealogy :

t

coalescent process
time



N - particle branching random walk (N - BRW )

Discrete-time branching- selection system .

N particles with locations in IR at each timestep.

Let ✗ be a real - valued random variable ( jump distribution) .

At each time ne No
,
each particle has two offspring .

Each of the 2N offspring particles makes an independent jump from its parent 's location ,
with the same law as ✗

.

The N rightmost particles (of the 2N offspring particles) form the population at time nt 1 .

÷É% _%%

Notation : ✗Y' (a) ≤ ✗{"(n) ≤ . . .
≤ ✗ (n) ordered particle positions at time n .
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Light- tailed jump distribution p(× > a) ≤ e-
"°

,
c > 0

Asymptotic speed
✗%HIf E- [×] < • then T-vn-c.CO , a) sit .

lim
n

= vn = Iim
✗¥4) a. s .

and

n→a n→a n in it
.
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as N → a.

Conjectured by Brunet + Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )
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Related result for Fisher - KPP equation with noise
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Genealogy

sample K particles from the N particles and trace their ancestry backwards in time

→ coalescent process .

Conjecture (Brunet , Derrida , Mueller , Manier)

If ✗ is light - tailed then the genealogy of a sample on a ( logNP timescale converges to
a Bolthausen - Sznitman coalescent as N→x .



Coalescent processes

Kingman's coalescent Bolthausen - Sznitman coalescent

Neutral population : choose particles to kill Population under selection .

uniformly at random in each generation .

Thanks to Goltz Kersting
and Anton Wako /binger
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N - BRW with heavy- tailed jump distribution

suppose P(✗ > 0C) ~ a-
✗

as x→x
, for some ×>0.

Asymptotic speed
Theorem ( Bérard and Maillard 2014)

✗ I'MIf E[×] < • , lim
n

= rn where vn ~ Can
"✗

( log NIK
-±

as N→ 0
.

n→x

If E- [×] = • , cloud of particles accelerates .

Genealogy

conjecture (Bérard and Maillard)
The genealogy on a log N timescale is approximately given by a star-shaped coalescent
when N is large .



Time and space scales

Let P(✗ > a) =
'

h (x)
for x≥ 0.

Assume his regularly varying with index a> 0

i. e. for any y> 0 , htcy)
hfx,

" Yt as ✗→ a.

and PCX ≥ 07=1 (no negative jumps) .

Let IN = Hogan
> timescale

Let an = hi
'

( 2N ln )
,

where V60 := inf { y≥ 0 : hly) > x } . Space scale

E[# jumps of size > cyan in

a time interval of length czen ]
= 2N • czln P( ✗ > cyan)

= 2N czln
~

2N Czln
ci2 New

= Éh(↳an)
as N→x

.



Main result

w.h.pe .

= with probability → 1- as N→ a.

Theorem (P.

,
Roberts

,
Talgigas 2021)

For y > 0 , be IN and t > 41N , the following occurs w.h.pe .

:

• spatial distribution : At time t
,
there are N - ◦ (N ) particles in

[✗Y' (t ) , × !%) + man ] .

• Genealogy : The genealogy on an ln - timescale is asymptotically given by a

star-shaped coalescent .

i.e. 3 Te [t - Zen , t - In] s.t.w.h.pe .

, for a uniform sample of K particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles in the sample has a common ancestor after time

Tt Enln , for any (EN) N with EN → 0 and Enln → o as N→ a
.
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3- Te [t - Zen , t - In] sit . whip .

, for a uniform sample of K particles
at time t

, every particle is descended from the rightmost particle at time T

and no pair of particles in the sample has a common ancestor after time

Tt Enln , for any (EN) N with EN → 0 and Enln → a as N→ a
.



N - BRW genealogy

Jump distribution X .

Time to coalesce coalescent

Light - tailed PCX > a) ≤ e-
"°

,
c > 0 ( logN)3 Bolthausen - Sznitman

Heavy - tailed PCX> a) rock , a> 0 109N Star-shaped



N - BRW genealogy

Jump distribution X .

Time to coalesce coalescent

Light - tailed PCX > a) ≤ e-
"°

,
c > 0 ( IogN)3 Bolthausen - Sznitman

stretched exponential PCX> a) ~ e- , Belo , 1) ?? ? ?
tail

Heavy - tailed PCX> a) rock , a> 0 109N Star-shaped

work in progress with E. Talyigas .



N - BRW genealogy

Jump distribution X .

Time to coalesce coalescent

Light - tailed PCX > a) ≤ e-
"°

,
c > 0 ( log NP Bolthausen - Sznitman

stretched exponential PCX> a) ~ e- , Belo , 1) ?? ? ?
tail

Heavy - tailed PCX> a) rock , a> 0 109N Star-shaped

work in progress with E. Talyigas .

Simulation by Ztalyigas .



Proof heuristics

want to show : w . h.p. , for t > 4- IN ,

N - ◦ (N ) particles ≤ man from leftmost

3- Te [t - 21N ,
t - ln] S.t.

• sample size K are all descended from rightmost time -T particle
•

no common ancestors of sample after time Tt Enln



Proof heuristics

want to show : w . h.p. , for t > 4- IN ,

N - ◦ (N ) particles ≤ man from leftmost
\

3- Te [t - 21N ,
t - In] S.t.

• sample size K are all descended from rightmost time -T particle
•

no common ancestors of sample after time Tt Enln

✗
i. Xz >

✗
3 , . . .

i. i. d. with ✗
,

d- ✗
.

Random walk with heavy tailed jumps

Lemma ( Durrett
'

83
,
Gantert ' 00)

For me IN
, q> 0 , I> 0 , for r > 0 small

, for N sufficiently large , if xµ > N
"

then mln

PCE Xj ≥ xn , Xi ≤ rxn Hi ≤ men) ≤ N
' ?

j=l
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

A : A particle makes a big jump at time T and takes the lead ( by ④ Can ) ) .

Its descendants stay in the lead until time t
, (other particles can't

take the lead with a big jump ,
and can't move far without a big jump ) .



< ⌘aN

T

t1

T + `N

t

A

B

C

D

Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

B : There are 011) big jumps in time interval [t, , t] , each with ◦ ( N )

descendants at time t
.
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T

t1

T + `N

t

A

B

C

D

Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

C : The tribe descended from the time-T leader doubles in size at each

timestep until almost time Ttln .
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D

Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

D: On the time interval [Ttln , t ] , the time -T leader 's tribe has

size N - o (N ) .
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

TE [t ,
- ln , t ,] w.h.pe .

:

If no particle takes the lead with a big jump during [s ,Sten] , then
diameter at time stln is small ( on an Space scale) .
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t
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

N - o (N ) particles are close to leftmost at time t (on an Space scale)
No big jumps in the time -T leader 's tribe up to time Ttln > te .

06-7 big jumps in the tribe during [Ttln , t] , each with ◦ (N ) descendants .
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T
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t
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Proof heuristics t
,

: = t - l
µ .

Let T= last time before time t, when a particle makes a jump ≥ pan and takes
"

big jump
" the lead .

time

star-shaped genealogy No time - (Tt Enln ) particles have ④ (N) time - t descendants
.

None of the particles in the time-T leader 's tribe have moved far by time Tt Enln ,
so each has ! ( N 2-

↳%) = ◦ (N ) descendants at time t .


