Genealogy of the
N-particle branching random walk with polynomial tails

Sarah Penington University of Bath

Joint work with Matt Roberts and Zsófia Talyigás

Branching-selection systems

- Particle systems: particles branch (produce offspring) and move in space killing rule keeps total number of particles constant.
- Toy models for a population under selection.

Location of a particle (=individual) represents its evolutionary fitness.

- Introduced by Brunet and Derrida in 1990s.

Recent results and open conjectures about long-term behaviour.
Genealogy:
Coalescent process

$$
t
$$ time

N-particle branching random walk $(N-B R W)$
Discrete-time branching-selection system.
N particles with locations in \mathbb{R} at each timestep.
Let X be a real-valued random variable (jump distribution).
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the $2 N$ offspring particles) form the population at time $n+1$.

Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
N-particle branching random walk ($N-B R W$)
Discrete-time branching-selection system.
N particles with locations in \mathbb{R} at each timestep.
Let X be a real-valued random variable (jump distribution).
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the $2 N$ offspring particles) form the population at time $n+1$.

Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
N-particle branching random walk ($N-B R W$)
Discrete-time branching-selection system.
N particles with locations in \mathbb{R} at each timestep.
Let X be a real-valued random variable (jump distribution).
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the $2 N$ offspring particles) form the population at time $n+1$.

Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
N-particle branching random walk ($N-B R W$)
Discrete-time branching-selection system.
N particles with locations in \mathbb{R} at each timestep.
Let X be a real-valued random variable (jump distribution).
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the $2 N$ offspring particles) form the population at time $n+1$.

Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
N-particle branching random walk ($N-B R W$)
Discrete-time branching-selection system.
N particles with locations in \mathbb{R} at each timestep.
Let X be a real-valued random variable (jump distribution).
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the $2 N$ offspring particles) form the population at time $n+1$.

Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.

Light-tailed jump distribution

$$
\mathbb{P}(X>x) \leqslant e^{-c x}, c>0
$$

Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ ass. and

Light-tailed jump distribution
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ ass. and
Theorem (Bérard and Gouéré 2010) if $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher-KPP equation with noise (Mueller, Mytnik, Quastel 2009)

Light-tailed jump distribution
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\quad \lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n} \quad$ ass. and $\begin{aligned} & \text { in } L^{1}\end{aligned}$
Theorem (Bérard and Gouéré 2010) if $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher-KPP equation with noise
(Mueller, Mytnik, Quastel 2009)
Genealogy
Sample k particles from the N particles and trace their ancestry backwards in time \rightarrow coalescent process.
Conjecture (Brunet, Derrida, Mueller, Munier)
If X is light-tailed then the genealogy of a sample on a $(\log N)^{3}$ timescale converges to a Bolthausen - Sznitman coalescent as $N \rightarrow \infty$.

Coalescent processes

Kingman's coalescent
Neutral population: choose particles to kill uniformly at random in each generation.

Bolthausen-Sznitman coalescent
Population under selection.

Thanks to Got Kersting and Anton Wakolbinger

Light-tailed jump distribution
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\quad \lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n} \quad$ ass. and $\begin{aligned} & \text { in } L^{1}\end{aligned}$
Theorem (Bérard and Gouéré 2010) if $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher-KPP equation with noise
(Mueller, Mytnik, Quastel 2009)
Genealogy
Sample k particles from the N particles and trace their ancestry backwards in time \rightarrow coalescent process.
Conjecture (Brunet, Derrida, Mueller, Munier)
If X is light-tailed then the genealogy of a sample on a $(\log N)^{3}$ timescale converges to a Bolthausen - Sznitman coalescent as $N \rightarrow \infty$.
N-BRW with heavy-tailed jump distribution
Suppose $\mathbb{P}(X>x) \sim x^{-\alpha}$ as $x \rightarrow \infty$, for some $\alpha>0$.
Asymptotic speed
Theorem (Bérard and Maillard 2014)
If $\mathbb{E}[X]<\infty, \quad \lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}$ where $v_{N} \sim c_{\alpha} N^{1 / \alpha}(\log N)^{1 / \alpha-1}$ as $N \rightarrow \infty$.
If $\mathbb{E}[X]=\infty$, cloud of particles accelerates.
Genealogy
Conjecture (Bérard and Maillard)
The genealogy on a $\log N$ timescale is approximately given by a star-shaped coalescent when N is large.

Time and space scales
Let $\mathbb{P}(X>x)=\frac{1}{h(x)}$ for $x \geqslant 0$.
Assume h is regularly varying with index $\alpha>0$
i.e. for any $y>0, \quad \frac{h(x y)}{h(x)} \longrightarrow y^{\alpha} \quad$ as $x \rightarrow \infty$.
and $\mathbb{P}(X \geqslant 0)=1$ (no negative jumps).
Let $\ell_{N}=\Gamma \log _{2} N^{\top}$ time scale
Let $a_{N}=h^{-1}\left(2 N l_{N}\right)$, where $h^{-1}(x):=\inf \{y \geqslant 0: h(y)>x\}$. space scale
$\mathbb{E}\left[\#\right.$ jumps of size $>c_{1} a_{N}$ in

$$
\begin{aligned}
& \text { amps of size }>c_{1} a_{N} \text { in } \\
&\text { a time interval of length } \left.c_{2} l_{N}\right]=2 N \cdot c_{2} l_{N} \mathbb{P}\left(X>c_{1} a_{N}\right) \\
&=\frac{2 N c_{2} l_{N}}{h\left(c_{1} a_{N}\right)} \sim \frac{2 N c_{2} l_{N}}{c_{1}^{\alpha} 2 N l_{N}}=\frac{c_{2}}{c_{1}^{\alpha}} \\
& \text { as } N \rightarrow \infty .
\end{aligned}
$$

Main result
w.h.p. $=$ with probability $\rightarrow 1$ as $N \rightarrow \infty$.

Theorem (P., Roberts, Talyigás 2021)
For $\eta>0, k \in \mathbb{N}$ and $t>4 l_{N}$, the following occurs w.h.p.:

- Spatial distribution: At time t, there are $N-o(N)$ particles in

$$
\left[X_{1}^{(N)}(t), X_{1}^{(N)}(t)+\eta a_{N}\right]
$$

- Genealogy: The genealogy on an l_{N}-timescale is asymptotically given by a star-shaped coalescent.
i.e. $\exists T \in\left[t-2 l_{N}, t-l_{N}\right]$ s.t. w.h.p., for a uniform sample of k particles at time t, every particle is descended from the rightmost particle at time T and no pair of particles in the sample has a common ancestor after time $T+\varepsilon_{N} l_{N}$, for any $\left(\varepsilon_{N}\right)_{N}$ with $\varepsilon_{N} \rightarrow 0$ and $\varepsilon_{N} l_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

$\exists T \in\left[t-2 l_{N}, t-l_{N}\right]$ s.t. w.h.p., for a uniform sample of k particles at time t, every particle is descended from the rightmost particle at time T and no pair of particles in the sample has a common ancestor after time $T+\varepsilon_{N} \ell_{N}$, for any $\left(\varepsilon_{N}\right)_{N}$ with $\varepsilon_{N} \rightarrow 0$ and $\varepsilon_{N} l_{N} \rightarrow \infty$ as $N \rightarrow \infty$.
$N-B R W$ genealogy
Jump distribution X.

Time to coalesce
Light-tailed $\mathbb{P}(X>x) \leqslant e^{-c x}, c>0$

Heavy-tailed $\mathbb{P}(X>x) \sim x^{-\alpha}, \alpha>0$

Time to coalesce $(\log N)^{3}$
$\log N$

Coalescent
Bolthausen-Sznitman

Star-shaped
$N-B R W$ genealogy
Jump distribution X.
Time to coalesce Coalescent
Light-tailed $\mathbb{P}(X>x) \leqslant e^{-c x}, c>0$
Stretched exponential $\mathbb{P}(X>x) \sim e^{-x^{\beta}}, \quad \beta \in(0,1)$ $(\log N)^{3}$ Bolthausen-Sznitman tail

Heavy-tailed $\mathbb{P}(X>x) \sim x^{-\alpha}, \alpha>0$
$\log N$
Star-shaped

Work in progess with Z. Talyigás.
$N-B R W$ genealogy
Jump distribution X.
Time to coalesce Coalescent
Light-tailed $\mathbb{P}(X>x) \leqslant e^{-c x}, c>0$ $(\log N)^{3}$ Bolthausen-Sznitman

Stretched exponential $\mathbb{P}(X>x) \sim e^{-x^{\beta}}, \quad \beta \in(0,1)$??

Heavy-tailed $\mathbb{P}(X>x) \sim x^{-\alpha}, \alpha>0$
$\log N$
Star-shaped

Work in progess with Z. Talyigás.
Simulation by Z. Talyigás.

Proof heuristics
Want to show: w.h.p., for $t>4 l_{N}$,
$N-o(N)$ particles $\leqslant \eta a_{N}$ from leftmost

$$
\exists T \in\left[t-2 l_{N}, t-l_{N}\right] \text { s.t. }
$$

- sample size k are all descended from rightmost time-T particle
- no common ancestors of sample after time $T+\varepsilon_{N} \ell_{N}$

Proof heuristics
Want to show: w.h.p., for $t>4 l_{N}$,
$N-o(N)$ particles $\leqslant \eta a_{N}$ from leftmost
$\exists T \in\left[t-2 l_{N}, t-l_{N}\right]$ st.

- sample size k are all descended from rightmost time-T particle
- no common ancestors of sample after time $T+\varepsilon_{N} \ell_{N}$
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. with $X_{1} \stackrel{d}{=} X$. Random walk with heavy tailed jumps Lemma (Durrett '83, Gantert '00)
For $m \in \mathbb{N}, q>0, \lambda>0$, for $r>0$ small, for N sufficiently large, if $x_{N}>N^{\lambda}$ then

$$
\mathbb{P}\left(\sum_{j=1}^{m \ell_{N}} X_{j} \geqslant x_{N}, \quad X_{i} \leqslant r x_{N} \quad \forall i \leqslant m \ell_{N}\right) \leqslant N^{-q}
$$

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes
 the lead.

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes
 the lead.

A: A particle makes a big jump at time T and takes the lead (by $\Theta\left(a_{N}\right)$). Its descendants stay in the lead until time t_{1} (other particles can' t take the lead with a big jump, and can't move far without a big jump).

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes

B : There are $O(1)$ big jumps in time interval $\left[t_{1}, t\right]$, each with $O(N)$ descendants at time t.

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes
 the lead.
C : The tribe descended from the time- T leader doubles in size at each timestep until almost time $T+l_{N}$.

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes

"big jump" the lead.

D: On the time interval $\left[T+l_{N}, t\right]$, the time $-T$ leader's tribe has size $N-O(N)$.

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes

$T \in\left[t_{1}-l_{N}, t_{1}\right]$ w.h.p.:
If no particle takes the lead with a big jump during $\left[s, s+l_{N}\right]$, then diameter at time $s+l_{N}$ is small (on a_{N} space scale).

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes

"big jump" the lead.
$N-o(N)$ particles are close to leftmost at time t (on a_{N} space scale) No big jumps in the time $-T$ leader's tribe up to time $T+l_{N}>t_{1}$. $O(1)$ big jumps in the tribe during $\left[T+l_{N}, t\right]$, each with $O(N)$ descendants.

Proof heuristics

$$
t_{1}:=t-l_{N}
$$

Let $T=$ last time before time t_{1} when a particle makes a jump $\geqslant \rho a_{N}$ and takes
 the lead.

Star-shaped genealogy No time- $\left(T+\varepsilon_{N} l_{N}\right)$ particles have $\Theta(N)$ time-t descendants. None of the particles in the time-T leader's tribe have moved far by time $T+\varepsilon_{N} l_{N}$, so each has $\Theta\left(N 2^{-\varepsilon_{N} \ell_{N}}\right)=O(N)$ descendants at time t.

